Optimization Algorithms for Distributed Machine Learning(Synthesis Lectures on Learning, Networks, and Algorithms)

分布式机器学习的优化算法

计算机软件

原   价:
608.00
售   价:
456.00
优惠
应用数学学会年会书单
发货周期:国外库房发货,通常付款后3-5周到货!
作      者
出  版 社
出版时间
2022年11月24日
装      帧
精装
ISBN
9783031190667
复制
页      码
130
语      种
英文
版      次
2023
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
本书暂无推荐
本书暂无推荐
看了又看