Spatially Explicit Hyperparameter Optimization for Neural Networks

神经网络的空间显式超参数优化

计算机科学技术基础学科

原   价:
1652.00
售   价:
1239.00
优惠
人工智能领域图书专题
发货周期:通常付款后3-5周到货!
作      者
出  版 社
出版时间
2022年10月19日
装      帧
平装
ISBN
9789811654015
复制
页      码
108
开      本
9.21 x 6.14 x 0.28
语      种
英文
版      次
2021
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is written for researchers of the GIScience field as well as social science subjects.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个