Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

协同机器人多模式自省的非参数贝叶斯学习

人工智能

原   价:
474.00
售   价:
355.00
优惠
人工智能领域图书专题
发货周期:预计8-10周发货
出  版 社
出版时间
2020年09月18日
装      帧
平装
ISBN
9789811562655
复制
页      码
137
开      本
9.21 x 6.14 x 0.33
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存 50 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This open access book focuses onrobot introspection,whichhas a direct impact on physical human–robot interactionandlong-term autonomy,andwhich can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics,the abilitytoreason,solve their ownanomaliesand proactivelyenrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which caneffectivelybe modeled as a parametrichidden Markovmodel (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using thehierarchical Dirichletprocess (HDP) on the standard HMM parameters,known as theHierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states andallows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods.This book is avaluablereferenceresource forresearchers and designers inthe fieldof robot learning and multimodal perception, as well as for senior undergraduate and graduateuniversitystudents.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个