Representation in Machine Learning(SpringerBriefs in Computer Science)

机器学习中的表征

工业工程学

原   价:
532.00
售   价:
399.00
优惠
人工智能领域图书专题
发货周期:通常付款后3-5周到货!
作      者
出  版 社
出版时间
2022年12月17日
装      帧
平装
ISBN
9789811979071
复制
页      码
440
语      种
英文
版      次
2023
综合评分
暂无评分
我 要 买
- +
库存 30 本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
This book provides a concise but comprehensive guide to representation, which forms the core of Machine Learning (ML). State-of-the-art practical applications involve a number of challenges for the analysis of high-dimensional data. Unfortunately, many popular ML algorithms fail to perform, in both theory and practice, when they are confronted with the huge size of the underlying data. Solutions to this problem are aptly covered in the book. In addition, the book covers a wide range of representation techniques that are important for academics and ML practitioners alike, such as Locality Sensitive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques’ effectiveness.
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个