Statistical Learning with Sparsity:The Lasso and Generalizations

套索与一般化:统计知识与稀疏性

经济统计学

售   价:
966.00
发货周期:预计5-7周发货
出  版 社
出版时间
2015年05月07日
装      帧
精装
ISBN
9781498712163
复制
页      码
368
开      本
6-1/8x9-1/4
语      种
英文
综合评分
暂无评分
我 要 买
- +
库存26本
  • 图书详情
  • 目次
  • 买家须知
  • 书评(0)
  • 权威书评(0)
图书简介
In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. The authors cover the lasso for linear regression, generalized penalties, numerical methods for optimization, statistical inference methods for fitted (lasso) models, sparse multivariate analysis, graphical models, compressed sensing, and much more.
馆藏图书馆
Harvard Library
本书暂无推荐
本书暂无推荐
看了又看
  • 上一个
  • 下一个